Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(5): 1346-1356, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779277

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.


Assuntos
Citocromos , Geobacter , Transporte de Elétrons , Citocromos/metabolismo , Membrana Celular/metabolismo , Metais , Oxirredução
2.
Water Res ; 232: 119668, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731205

RESUMO

Although surface-enhanced Raman spectroscopy (SERS) offers a promising technology for sensitive detection of environmental pollutants in natural waters, its performance can be greatly affected by the environmental matrix. The lack of identification of the origin and the underlying mechanism of matrix effect hinders the application of SERS in practical environmental analysis. Herein, with silver nanoparticles (AgNPs) as a solution-based SERS substrate, the matrix effect from environmental waters on SERS analysis and the underlying mechanisms were investigated. It was found that natural water matrix could deteriorate SERS performance and cause artefacts in SERS spectra. Among various aqueous components, natural organic matter (NOM), including humic substances and proteins, mainly contributed to the matrix effect on SERS detection, while polysaccharides or inorganic ions had minor influence. The matrix effect from NOM was found to be prevalent for different analytes and SERS substrates. The mechanism of the matrix effect from NOM in the ternary system of analyte, NOM, and nanoparticles was investigated through three mutual interactions. The microheterogeneous repartition of analytes by NOM, other than the formation of NOM-corona or competitive adsorption between NOM and analytes on nanoparticles, was found to play the dominating role in interfering with SERS detection. This work illuminates the origin and underlying mechanisms of the matrix effect, which will promote the practical application of SERS technology in environmental analysis.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Poluentes Ambientais/análise , Prata/química , Adsorção , Água
3.
Environ Int ; 166: 107381, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810547

RESUMO

The spread of antibiotics and antibiotic resistance genes (ARGs) in environments has posed potential threats to public health. Unfortunately, conventional biological wastewater treatment technologies generally show insufficient removal of antibiotics and ARGs. Bioelectrochemical systems, which can effectively degrade refractory organic pollutants via enhancing microbial metabolisms through electrochemical redox reaction, may provide an alternative for the control of antibiotics and ARGs. Herein, an anaerobic electrochemical membrane bioreactor (AnEMBR) was conducted by combining bioelectrochemical system and anaerobic membrane bioreactor to treat antibiotic-containing wastewater. The AnEMBR at open circuit showed stable CH4 production and high removal of COD and chlortetracycline (CTC) in treating 2.5-15 mg/L CTC. However, increasing CTC to 45 mg/L completely inhibited the methanogenesis of AnEMBR at open circuit. After applying external voltage in AnEMBR, the performances of AnEMBR were significantly improved (e.g., increased CH4 production and CTC removal). Moreover, CTC exposure significantly increased the relative abundances of ARGs in sludge, supernatant, and effluent in AnEMBR at open circuit. Applying voltage greatly attenuated the total relative abundances of ARGs in the supernatant and effluent of AnEMBR compared to those at open circuit. This could be attributed to the enrichment of tetracycline degradation gene tetX, which greatly enhanced the removal of CTC by the AnEMBR and thus reduced the selective pressure of CTC on the microorganisms in supernatant and effluent for ARGs proliferation. These results would provide an effective wastewater treatment technology for treating high-level antibiotic-containing wastewater to mitigate the potential risk of ARGs and antibiotics spread in receiving water body.


Assuntos
Antibacterianos , Clortetraciclina , Antibacterianos/farmacologia , Águas Residuárias , Anaerobiose , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Reatores Biológicos , Proliferação de Células
4.
ACS Nano ; 15(12): 19828-19837, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34851615

RESUMO

Nanoparticles contribute to enormous environmental processes, but, due to analytical challenges, the understanding of nanoparticle fate remains elusive in complex environmental matrices. To address the challenge, a core-shell nanoparticle-enhanced Raman spectroscopy (CSNERS) imaging method was developed to selectively track prevalent SiO2 nanoparticles in an aquatic plant, Lemna minor. By encapsulating gold nanoparticles and Raman reporters inside, the resonance Raman signature was enhanced, thus enabling the sensitive and selective detection of SiO2 nanoparticles at an environmentally relevant concentration. The panoramic visualization of the translocation pathway of nanoparticles shows an unexpected, fast (in hours) and a preferential accumulation of nanoparticles on the node, leaf edge, root cap, etc., implying the ability of CSNERS to spectroscopically determine nanotoxicity. The core-shell design in CSNERS was capable of multiplex labeling two differently charged nanoparticles and distinguishing their biobehavior simultaneously. Meanwhile, the CSNERS method can be further applied for a variety of nanoparticles, implying its promising applications for nanotoxicity research and biogeochemical study.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Diagnóstico por Imagem , Ouro , Dióxido de Silício
5.
J Hazard Mater ; 402: 123846, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254818

RESUMO

Persulfate-based advanced oxidation technology exhibits great potential for hazardous organic pollutant removal from wastewater. Acceleration of pollutant degradation needs to be elucidated, particularly for heterogeneous catalytic systems. In this study, manganese oxide ordered mesoporous carbon composites (MnOx@OMC) were prepared by nano-casting method and used for persulfate activation to degrade phenol. Kinetics analysis indicate that the rate of phenol degradation using MnOx@OMC composites was improved by 34.9 folds relative to that using a mixture of MnOx and OMC. The phenol toxicity towards Caenorhabditis elegans could be totally reduced within 8 min. The different roles of MnOx and OMC in persulfate activation were confirmed to validate their synergistic effect. MnOx provided major active sites for persulfate activation in accordance with the surface Mn3+/Mn4+ cycle to induce SO4•- radicals. The OMC matrix provided the adsorption sites to enrich phenol molecules on the catalytic surface and promote the interfacial electron transfer process for persulfate activation. Moreover, a novel kinetic model with two distinct kinetic stages was established to verify the effects of phenol and persulfate on phenol removal.

6.
Water Res ; 172: 115538, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007675

RESUMO

In nature, many microorganisms show resistance to toxic selenite by reducing selenite to non-soluble and low toxic elemental selenium. Extracellular polymeric substances (EPS), a high-molecular-weight biopolymers originated from microbial metabolism, contain many reducing groups and can induce reductive transformation of pollutants. However, the roles of EPS and its redox state in reductive detoxification or reduction removal of selenite, respectively, remain unknown yet. Herein, the reduction of selenite by different sources of EPS was investigated. Selenite was proved to be reduced by EPS and partly transformed to elemental selenium. The formed elemental selenium was mainly selenium nanoparticles confirmed by transmission electron microscopy coupled with energy dispersive spectroscopy. The redox state of EPS governed selenite reduction and elemental selenium formation, and the reduced state of EPS was in favor of selenite reduction. Dissolved oxygen concentration in water regulated EPS redox state and influenced selenite reduction. The thiols, aldehyde and phenolic groups in EPS were responsible for selenite reduction. Under selenite stress, EPS was capable of increasing cell survivability by enhancing microorganisms-mediated selenite reduction. This work revealed the previously undiscovered roles of EPS in selenite reduction and elemental selenium formation in aquatic environments and also suggested a possible crucial role of EPS in selenium biogeochemical cycle.


Assuntos
Nanopartículas , Selênio , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Ácido Selenioso
7.
Environ Sci Technol ; 54(3): 1614-1622, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31976657

RESUMO

Extracellular DNA (eDNA), which is derived from lysis or secretion of cells, is ubiquitous in various environments and crucial for gene dissemination, bacterial metabolism, biofilm integrity, and aquatic monitoring. However, these processes are largely influenced by damage to eDNA. Photodamage to eDNA, one of the most important types of DNA damage in natural waters, thus far remains unclear. In particular, the roles of the ubiquitous dissolved organic matter (DOM) in this process have yet to be determined. In this study, eDNA photodamage, including both deoxynucleoside damage and strand breaks, proved to be significantly influenced by DOM. DOM competed with eDNA for photons to inhibit the direct photodamage of eDNA. Nevertheless, DOM was photosensitized to produce reactive oxygen species (ROS) (i.e., hydroxyl radicals (·OH) and singlet oxygen (1O2)) to enhance the indirect photodamage of eDNA. The ·OH induced damage to four deoxynucleosides and strand breaks, and the 1O2 substantially enhanced deoxyguanosine damage. The presence of DOM changed the main photodamage products of deoxynucleosides, additional oxidation products induced by ROS formed besides pyrimidine dimers caused by UV. Results indicate that DOM-mediated indirect photodamage contributed significantly to eDNA photodamage in most water bodies. This study revealed the previously unrecognized crucial role of DOM in the decay of eDNA in waters.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , DNA , Oxirredução , Espécies Reativas de Oxigênio , Oxigênio Singlete
8.
Sci Total Environ ; 649: 1260-1268, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308896

RESUMO

The photodegradation of discharged effluent organic matter (EfOM) changes its composition and shifts its impacts on pollutant migration and transformation in receiving waters. However, to date, EfOM photodegradation processes are not well understood due to the complexity and heterogeneity of EfOM. Herein, the spectroscopic analysis including ultra violet-visible (UV-Vis), fluorescence and FTIR spectroscopies coupled with two-dimensional correlation analysis (2D-COS) were used to draw a comprehensive view of EfOM photodegradation and involving mechanisms. Results revealed that the photolability of each component in EfOM followed the order: tannin-like > humic-like > protein-like > carbohydrate-like and aliphatic compounds. The photolability of different components of EfOM were found to be related to the photolability of their functional groups. Specifically, the aromatic, carboxylic, phenolic and quinonoid groups associated with humic or tannin-like compounds were more prone to be photodegraded than amides in proteins or C-OH and C-O-C in carbohydrates. Furthermore, the humic-like components, dominating the light absorption of EfOM, were found to be degraded by direct photolysis. Nevertheless, the photodegradation of tannin-like and protein-like components were mainly due to the indirect photodegradation by ROS and 3OM⁎. Furthermore, results indicated that UV light, rather than visible light, was responsible for the photodegradation of EfOM. The spectroscopic techniques integrated with 2D-COS analysis could serve as a powerful tool with which to clarify complex EfOM photodegradation process as well as to improve our understanding of the fate of discharged EfOM and related environmental processes.


Assuntos
Fotólise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/química , China , Espécies Reativas de Oxigênio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Environ Sci Technol ; 51(21): 12611-12618, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28985472

RESUMO

A high-efficient, low-cost, and eco-friendly catalyst is highly desired to activate peroxides for environmental remediation. Due to the potential synergistic effect between bimetallic oxides' two different metal cations, these oxides exhibit superior performance in the catalytic activation of peroxymonosulfate (PMS). In this work, novel Mn1.8Fe1.2O4 nanospheres were synthesized and used to activate PMS for the degradation of bisphenol A (BPA), a typical refractory pollutant. The catalytic performance of the Mn1.8Fe1.2O4 nanospheres was substantially greater than that of the Mn/Fe monometallic oxides and remained efficient in a wide pH range from 4 to 10. More importantly, a synergistic effect between solid-state Mn and Fe was identified in control experiments with Mn3O4 and Fe3O4. Mn was inferred to be the primary active site in the surface of the Mn1.8Fe1.2O4 nanospheres, while Fe(III) was found to play a key role in the synergism with Mn by acting as the main adsorption site for the reaction substrates. Both sulfate and hydroxyl radicals were generated in the PMS activation process. The intermediates of BPA degradation were identified and the degradation pathways were proposed. This work is expected to help to elucidate the rational design and efficient synthesis of bimetallic materials for PMS activation.


Assuntos
Compostos Benzidrílicos , Nanosferas , Peróxidos , Fenóis , Compostos Férricos
10.
Water Res ; 106: 242-248, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27728818

RESUMO

Microbial extracellular polymeric substances (EPS) widely exist in natural environments and affect the migration and transformation of pollutants in aquatic environments. Previous works report that EPS have some reducing functional groups and can reduce heavy metals. However, because of the weak reducing capability of EPS, the reduction of heavy metals by EPS without cells is extremely slow, and its effect on heavy metals species is insignificant. In this work, the accelerated reduction of silver ions (Ag+) by EPS from Shewanella oneidensis MR-1 under illumination was investigated. UV-visible spectroscopy, transmission electron microscopy (TEM) coupled with an energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were used to confirm the formation of silver nanoparticles (AgNPs) via the reduction of Ag+ by EPS under light illumination. The Ag+ reduction by EPS follows pseudo-first-order kinetics under both visible and UV light, and the light irradiation can significantly accelerate AgNPs formation. On the one hand, visible light can excite AgNPs for their surface plasma resonance (SPR) and accelerate the electrons from the EPS to adjacent Ag+. On the other hand, EPS molecules may be excited by UV light to produce strong reducing species, which enhance Ag+ reduction. Moreover, pH, dissolved oxygen were found to affect the formation of AgNPs by EPS. This work proves the reducing capability of EPS on the reduction of Ag+, and this process can be accelerated under light illumination, which may affect the speciation and transformation of heavy metals in natural waters.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Íons/química , Luz , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...